Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1094720200250030403
Biotechnology and Bioprocess Engineering
2020 Volume.25 No. 3 p.403 ~ p.413
Hyperosmotic Adaptation of Pseudomonas protegens SN15-2 Helps Cells to Survive at Lethal Temperatures
Wang Xiaobing

Tang Danyan
Wang Wei
Abstract
Pseudomonas protegens is a gram-negative bacterium with an excellent biological control effect. Compared to standard cells growing in NaCl-free media, the ability of the hyperosmotic cells (450 mM NaCl) to resist high temperatures and freezing was significantly improved. It is of great significance to apply the P. protegens to elaborate on the hyperosmotic adaptation mechanism. RNA-seq was used to sequence P. protegens cultured with 0 mM and 450 mM NaCl. Comparative transcriptomic analyses of the different treatments were performed using gene ontology and the Kyoto encyclopedia of genes and genome. The results revealed that hyperosmotic stress had prominent impacts on the genes involving in multiple cellular functions. The hyperosmotic environment significantly affected carbohydrate, energy, and amino acid metabolism, as well as membrane system and cell motility. Our findings indicated that P. protegens adopted a series of approaches, including the high cytoplasmic concentrations of potassium ions and the uptake or synthesis of osmoprotectants, for surviving hyperosmotic stress. Among these, trehalose and proline synthesis appeared to be an important method to withstand prolonged hyperosmotic stress in P. protegens. These data provide crucial resource that may determine specific responses to the hyperosmotic environment in P. protegens.
KEYWORD
Pseudomonas protegens, transcriptomic, hyperosmotic, stress resistance
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)